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The set Y, of all real valued functions I defined on a compact metric
space (M, p) which satisfy I/(x) - I(Y)I ~ p(x, y), is of great importance
in approximation theory. For instance, if M = [0, I], then it can be shown
that Jackson's theorem is equivalent to the statement that for every IE Y,
there is apE Pn (the n-th degree polynomials) such that

max Ij(x) - p(x)I ~ cln.
xeM

In ([2], Theorem I, p. 26), it is proven that if G is any n-dimensional space
of real functions on M, then there exists anjE Y such that

inf sup Ij(x) - g(x) I ;? 1/2n.
geG,xeM

However, it is fairly easy to show that if G is the span of {T1(x) ... Tix)},
where

and

Tix) = p,
!O,

if x E [k - lin, kin),
otherwise,

k = I ... n - I,

if x E [n - lin, 1],
otherwise,

then if/E Y, there is agE G such that

sup Ij(x) - g(x) I ~ 1/2n
xeM

(we just approximate I in each of the intervals, by 1/2[suPI+ infjD.
Thus, characteristic functions form a best n-dimensional approximating
space on [0, I].

t This research was supported by the U.S. Army Research Office (Durham). The author
would like to express his appreciation of Professor D. J. Newman, who suggested the topic
and provided many helpful ideas.
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In this paper, we extend this result for n = 2 to arbitrary compact metric
spaces. In the last section of the paper, we offer a conjecture and some
remarks on the general case.

Notation.

(1) All functions to be considered are real; a, b denote real constants.

(2) (M, p) is a compact metric space.

(3) Ilfll = SUP",eM If(x)l.

(4) If gl(X) and g2(X) are any functions on M,

E(gl' g2) = sup infllf - ag1 - bg2 11·
{e.'/' a,b

(5) If T eM, T' is its complement, d(T) is its diameter and

Now, we state our:

T(x) = l~:
xET
xET'.

MAIN THEOREM. There exists aTe M such that

Moreover, we shall actually be able to calculate E(T, T') in terms of the
geometry of M.

THEOREM 1. Let gl(X) and g2(X) be arbitrary functions on M. Then

(1) Ifl E SP{gl' g2}, E(gl' g2) < 1/2 d(M).

(2) If 1 1= SP{gl ,g2}, E(gl ,g2) = 00.

Proof (1) For eachfE Y,

Ilf(x) - 1/2[sup f + infflIl < 1/2 d(M).

(2) If 1 1= sp{ gl , g2}, let

8 = inflll - agl - bg2 11.
a,b

By compactness (see [1], Lemma on p. 16),8 > O. Clearly,

infll n - agl - bg2 11 = n8.
a,b

Hence, E(gl ,g2) ~ n8 for all n, and therefore, E(gl ,g2) = 00. Q.E.D.



52 FEINERMAN

In looking for a best approximating space, we can assume I is in our space.
We are now looking for a g(x) such that E(I, g) is a minimum.

Now that we have the constant function to approximate with, we can
look only at those fE Y such that Ilfll ~ d(M), since instead of f, we can
deal withf(x)- f(xo), where XoE M.

DEFINITION. ~ = {IE Y : Ilfll ~ d(M)}.

In approximating a bounded function, we can always assume that our
second function, g, is bounded. Without loss of generality, we can assume
Ilgll ~ 1.

The next theorem provides a crucial inequality.

THEOREM 2. Let Xl , X 2 and Xa be points of M such that

g(XI) < g(X2) < g(xa)·

Then

Proof Let MI = {Xl' X 2 , xa} and let Y(MI ) be the set of real valued
functionsf(x) defined on MI , such that

i, j = 1,2,3.

Let fo(x) == p(x, x2). It is easily seen that fo E ~ ~ Y(MI). Let a + bg(x)
be a best approximation to f on MI , and let 0 = II a + bg - fll, with the
norm restricted to MI' Then we have

a + bg(x1) - fO(XI) = -0

a + bg(x2) - fo(x2) = 0

a + bg(xa) - fo(xa) = -0.

(Essentially, the reason is that otherwise better a, b could be found.) Sol­
ving these three equations for 8, we have

8 _ [g(xa) - g(x2)] P(XI , x2) + [g(x2) - g(xl )] p(x2 , xa)
- 2[g(xa) - g(xl )]

Thus,

inf sup I a + bg(x) - fo(x) I ~ inf sup Ia + bg(x) - fo(x) I = 8
a,b xEM a,b XEM1

and, hence,
E(l, g) ~ 8. Q.E.D.
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The next theorem gives an explicit formula for E(l, g), when g is a
characteristic function.

THEOREM 3. Let TC M. Then E(l, T) = 1/2 max[d(T), d(T')].

Proof Since T(x) = 1 - T(x), sp{l, T(x)} = sp{T(x), T(x)}. LetfE 9'0.
We want to approximate f by aT(x) + bT(x), which is a if x E T and b if
XE T. Let

ao = Hsupj(x) + infj(x)],
XET XET

bo = Hsupj(x) + inf j(x)].
xET' xET'

For t E T, we have

Ij(t) - ao I = IHj(t) - supj(x)] + Uj(t) - infj(x)] I.
xET xET

The two summands never have the same sign and since f E 9'0, each is less
than td(T). Similarly, If(x) - bo 1 ~ td(T') for x E T. Since f is arbitrary,
£(1, T) ~ t max[d(T), d(T)].

Now let e > 0 be given, and choose Xl , X 2 E T such that

Letfo(x) = p(x, Xl)' Thenfo E 9'0 . For any a, b,

[I.to - aT - bT' II ~ max Ifo(x) - aT(x) - bT(x)I
X=Xl'X2

= max [I a I, 1p(xl , x 2) - a IJ

~ 1/2 p(xI , x2)

~ 1/2 d(T) - e/2.

Thus E(I, T) > 1/2 d(T) - e/2. Similarly, £(1, T) > 1/2 d(T) - e/2. Since
e was arbitrary, we are done.

THEOREM 4. Let g(x) have only a finite number of values. Then, there
exists a TC M such that E(I, T) ~ £(1, g).

Proof Let g(x) take on the values Y1 '" Yn, with YI < Y2 < ... < Yn .
By the same argument used in the proof of the previous theorem,

k = 1 '" n.
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Let Ul = g-l(Yl) and let Uk (k > 1) be defined inductively as

for all x' E Uk-I}'

Obviously, d(Uk ) :s;; 2E(1, g). Let T = Un' Then d(T) :s;; 2E(1, g).

CLAIM. d(T'):S;; 2E(I, g).

To prove the claim, we take Xl and X2 E T' and assume P(XI , X2) > 2E(1, g).
For some j, k, Xl E g-l(y;) and X2E g-l(Yk), and since, d[g-l(y;)] :s;; 2E(1, g),
we must have j -=1= k; we can assume j < k. Since g-l(Yl) ~ T, 1 < j < k.
As Xl E T', there is an Xo E g-l(Yi) with i < j and p(xo , Xl) > 2E(1, g).

By Theorem 2, since g(xo) < g(xl ) < g(x2), we have

E(1 ) ~ [g(X2) - g(Xl)] P(XI , xo) + [g(Xl) - g(xo)] P(XI , X2)
, g "'" 2[g(X2) - g(xo)]

> [g(x2) - g(Xl)] 2E(1, g) + [g(Xl) - g(xo)] 2E(I, g)
2[g(X2) - g(xo)]

= E(1,g)

and we have proven the claim. Therefore, 1/2 max[d(T), d(T')] :s;; E(I, g) and
by Theorem 3, E(I, T) :s;; E(1, g). Q.E.D.

We now eliminate the condition thatg(x) has only a finite number of values.
For this, we need the following

LEMMA. Ifg(x) is non-constant andll gn - g 11---+ 0, then E(1,gn)---+E(1, g).

Proof In approximating fE ~ by a + bg(x), we can always assume
II a + bg - fll :s;; Ilfll (since, otherwise, we can do better with a = b = 0).

For every a, b, let L(a + bg) = b. Then L is a linear functional defined
on a finite dimensional space and is, therefore, bounded, i.e., there exists
a c(g) such that

I b I = I L(a + bg)1 :s;; c(g) II a + bgll.

Let a and b be arbitrary and let f E ~ • Then

III a + bg - fll - II a + bg.. - fill :s;; II(a + bg - 1) - (a + bgn - 1)[1
= I b III g - g.. II

:s;; c(g) II a + bg 1111 g - g.. II

:s;; c(g)(I1 a + bg - fll + [I flD II g - g.. II
:s;; 2c(g) [If II II g - gn II
:s;; 2c(g) d(M) II g - gn II·
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II a + bg - III ~ II a + bgn - III + 2c(g) d(M) II g - gn II·
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Therefore,

sup inf II a + bg - III ~ sup inf II a + bgn - iii + 2c(g) d(M)/1 g - gn II,
ref/'o a,b ref/'o a,b

i.e., E(1, g) ~ E(l, gn) + 2c(g) d(M) II g - gn II. Similarly, starting with
II a + bgn - III ~ II a + bg - III + 2c(g) d(M) II g - gn II, we get E(1, gn) ~
E(1, g) + 2c(g) d(M) II g - gn II. Letting n -- 00, we have E(l, gn) -- E(1, g).

Q.E.D.

Assume that g(x) has an infinite number of values.
Define g,,(x) as follows: If kin < g(x) ~ k + lin, let gix) = k + lin.

Since we assume that II g II ~ 1, gn(x) has at most 2n + 1 values, II g,,(x)11 ~ 1
and /I gn - g II ~ lin. For each n, there is a Tn C M such that E(1, Tn) ~ E(l, gn).
Therefore,

Since,

we have
inf E(1, Tn) ~ E(1, g).

n

In the case where g(x) has only a finite number ofvalues, we rely on Theorem 4
to obtain a TC M such that E(l, T) ~ E(1, g).

Now, let G1 be the set of all subsets of M and let G be the set ofall functions
on M. Then

inf E(l, T) ~ inf E(1, g)
TeG1 geG

and, since G1 C G, we have

inf E(1, T) = inf E(l, g),
TeG1 geG

i.e., in choosing a best space we only have to look at characteristic functions!
However, does there exist a T1 E G1 such that

EO, T1) = inf E(l, T)?
TEGI

In other words, does there exist a T1 C M such that

max[d(T1), d(T1')] = inf max[d(T), d(T')]?
TeG1

This question is answered by the next theorem.
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THEOREM 5. Let {Tn} be a sequence of subsets of M such that

Then there is a T C. M such that max[d(T), d(T')] ~ 1.

Proof. Pick any Xo E M. By possibly interchanging Tn and Tn', we can
assume Xo E Tn . Let

fn(x) = p(X, Tn) = inf p(x, y).
yeT"

Then 0 ~fn(x) ~ p(X, Xo) ~ d(M). Thus, {fn} is uniformly bounded.
Now let x, Y E M and 0 > 0 be given. There is a Yl E Tn such that
\fn(Y) - p(y, Yl)1 < o. Then

f ..(x) - f..(y) = inf p(x, z) - inf p(y, z)
zeTn zeTn

~ p(x, Yl) - p(y, Yl) + 0

~ p(x,y) + O.

Similarly, we get fn(Y) - fn(x) ~ p(x, y) + O. Since 0 is arbitrary, we have
Ifn(x) - f,,(Y)1 ~ p(x, y) and, thus, Un} is equicontinuous. By the Ascoli­
Arzela Theorem, {fn} has a uniformly convergent subsequence which,
without loss of generality, we can assume is {fn} itself, i.e., f" -- f uniformly.
Let T = 1-1(0). Tis nonempty, since Xo E T.

CLAIM. d(T) ~ 1, d(T') ~ 1.

Proof. Take x, yET so that f(x) = 0, f(y) = O. Given 0 > 0, there is
as N such that n ~ N =? fn(x) < 0, fn(Y) < Sand d(T,,) < 1 + S. We can
find Xl' Yl E Tn such that p(X, Xl) < 0, p(y, Yl) < S, implying

p(X, y) ~ p(X, Xl) + P(XI , Yl) + P(YI , y) < 1 + 30.

Therefore, d(T) ~ 1.
Now take X, yET' so that f(x) #- 0, f(y) #- O. Given 0 > 0, there is

an n such that fix) > 0, fn(Y) > 0 and d(T,,') < 1 + o. Therefore,
p(x, Tn) > 0 and p(y, T,,) > 0, i.e., x, Y E Tn'. Also p(X, y) ~ d(T,,') < 1 + o.
Therefore, d(T') ~ 1. Q.E.D.

With Theorem 5 we have completed our proof of the Main Theorem.
By Theorem 3, we know that the minimum of E(gl , g2) is

1/2 min [max(d(T), d(T')].
TC;M
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If we are looking for a best one-dimensional approximating space, then as
in Theorem 1, we see that the only such space is that of the constant function.
The "error," E(1, 0), is, by Theorem 3, 1/2 d(M). What is surprising is that
for many compact metric spaces M, the "error" in the two-dimensional
case is the same as in the one-dimensional case.

EXAMPLES

(a) Let M be a closed equilateral triangle of side 1, in R2. Then

E(1,O) = (1/2) d(M) = 1/2.

CLAIM. Let T C. M. Then max[d(T), d(T)] = 1.

To prove the claim, we consider the three vertices. Either T or T must
contain at least two of the vertices; hence max[d(T), d(T)] = 1. Therefore,

inf E(gl' g2) = 1/2 inf{max[d(T), d(T)]} = 1/2 = E(1, 0).
gt,g2 T

(b) Let M be a closed regular pentagon in R2 of side 1. Then

E(1,O) = 1/2 d(M) = Vl/2[1 - COS(37T/5)].

CLAIM. Let T C. M. Then max[d(T), d(T')] = d(M).

To prove the claim, assume it's false and consider the five vertices which
(ordered in a clockwise manner) we denote by Xl' X2 , Xa , X 4 , and Xs '
Suppose Xl E T. Then, since p(xi , xa) = p(xi , x4) = d(M), we must have
X a and X 4 in T. By the same argument, X 2 and Xs must be in T. But
p(x2 , xs) = d(M), proving our claim. Therefore,

inf E(gl' g2) = (1/2) inf{max [d(T), d(T)]} = 1/2 d(M) = E(1, 0).
gt,K2 T

This example generalizes to any closed regular polygon in R2 of sidelength
one, with an odd number of sides.

(c) Let M be a closed disk in R2 of diameter 1. Then

E(I, 0) = (1/2) d(M) = 1/2.

CLAIM. Let T C. M. Then max[d(T), d(T')] = 1.

To prove this claim, assume it's false and consider the points on the
boundary of M. If such a point p belongs to T, then its antipodal point p',
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as well as some neighborhood N' of p', is in T'. If N is the set of antipodal
points of the points of N', then N, as well as some neighborhood of N,
is contained in T. Continuing in this manner, we end up dividing the circle
into two disjoint, open sets, which is impossible. We have thus proven the
claim.

Thus,

inf E(gl , g2) = inf E(l, T) = (1/2) inf{max[d(T), d(T')]} = 1/2 = E(I,O).
~~ T T

This example generalizes to a closed ball in Rn (n ;;::: 2) of diameter one.

Remarks. If M = [0,1], then, as we saw, we can decompose Minto n
pairwise disjoint sets, Tl ,... , Tn , such that

E(Tl ,"', Tn) = inf E(gl ,..., gn).
gt,···,gn

If M is an arbitrary compact metric space, then, as we have seen, we can find
disjoint sets Tl and T2(= Tl ') such that

E(Tl , T2) = inf E(gl' g2)'
Kt,g2

It has been conjectured that in this general case for every n, M can be
decomposed into n pairwise disjoint sets Tl , T2 ,..., Tn such that (*) holds.
However, for n = 3 and M, a closed square in R2, we have disproven this
conjecture. We offer here a weaker conjecture: If M is a compact metric
space, and n;;::: 1, there are subsets T1 , ... , Tn (not necessarily pairwise
disjoint) such that (*) holds. If true, it would establish that there always
exists a best approximating space which is spanned by characteristic functions,
but it would not be as easy to calculate the "error" as in Theorem 3.
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